题目内容
【题目】在直角△ABC中,∠ACB=90°,∠B=60°,AD,CE分别是∠BAC和∠BCA的平分线,AD,CE相交于点F.
(1)求∠EFD的度数;
(2)判断FE与FD之间的数量关系,并证明你的结论.
【答案】(1)120°;(2)FE=FD. 见解析
【解析】试题分析:(1)根据三角形内角和定理和角平分线的定义计算求解;
(2)在AC上截取AG=AE,则EF=FG;根据ASA证明△FGC≌△FDC,得DF=FG,故判断EF=FD.
试题解析:(1)∵△ABC中,∠ACB=90°,∠B=60°,
∴∠BAC=30°.
∵AD,CE分别是∠BAC和∠BCA的平分线,
∴∠FAC=∠BAC=15°,∠FCA=∠ACB=45°.
∴∠AFC=180°-∠FAC-∠FCA=120°,
∴∠EFD=∠AFC=120°.
(2)结论:FE=FD.
证明:如图,在AC上截取AG=AE,连接FG,
∵AD是∠BAC的平分线,
∴∠EAF=∠GAF.在△FAE和△FAG中,
AE=AG,∠EAF=∠GAF,AF=AF,
∴△AEF≌△AGF(SAS),
∴FE=FG,∠AFE=∠AFG.
∵∠EFD=120°,
∴∠DFC=60°,∠AFG=∠AFE=60°,
∴∠CFG=60°=∠DFC.
∵EC平分∠BCA,
∴∠DCF=∠FCG=45°.
在△FGC和△FDC中,
∵∠GFC=∠DFC,FC=FC,∠FCG=∠FCD,
∴△FGC≌△FDC(ASA),
∴FG=FD,
∴FE=FD.
练习册系列答案
相关题目