题目内容
【题目】如图,东湖隧道的截面由抛物线和长方形构成,长方形的长OA为12cm,宽OB为4cm,隧道顶端D到路面的距离为10cm,建立如图所示的直角坐标系
(1)求该抛物线的解析式.
(2)一辆货运汽车载一长方体集装箱,集装箱最高处与地面距离为6m,宽为4m,隧道内设双向行车道,问这辆货车能否安全通过?
(3)在抛物线型拱壁上需要安装两排灯,使它们离地面高度相等,如果灯离地面的高度不超过8.5m,那么两排灯的水平距离最小是多少米?
【答案】
(1)】解:根据题意,该抛物线的顶点坐标为(6,10),
设抛物线解析式为:y=a(x﹣6)2+10,
将点B(0,4)代入,得:36a+10=4,
解得:a=﹣ ,
故该抛物线解析式为y=﹣ (x﹣6)2+10
(2)】解:根据题意,当x=6+4=10时,y=﹣ ×16+10= >6,
∴这辆货车能安全通过
(3)】解:当y=8.5时,有:﹣ (x﹣6)2+10=8.5,
解得:x1=3,x2=9,
∴x2﹣x1=6,
答:两排灯的水平距离最小是6米
【解析】(1)设出抛物线的解析式,根据抛物线顶点坐标,代入解析式;(2)令x=10,求出y与6作比较;(3)求出y=8.5时x的值即可得.
【题目】在直角△ABC中,∠ACB=90°,∠B=60°,AD,CE分别是∠BAC和∠BCA的平分线,AD,CE相交于点F.
(1)求∠EFD的度数;
(2)判断FE与FD之间的数量关系,并证明你的结论.
【题目】谷歌人工智能AlphaGo机器人与李世石的围棋挑战赛引起人们的广泛关注,人工智能完胜李世石.某教学网站开设了有关人工智能的课程并策划了A,B两种网上学习的月收费方式:
收费 方式 | 月使用费(元) | 包时上网 时间(h) | 超时费(元/min) |
A | 7 | 25 | 0.6 |
B | 10 | 50 | 0.8 |
设小明每月上网学习人工智能课程的时间为x小时,方案A,B的收费金额分别为yA元,yB元.
(1)当x≥50时,分别求出yA,yB与x之间的函数关系式;
(2)若小明3月份上该网站学习的时间为60小时,则他选择哪种方式上网学习合算?