题目内容

【题目】如图,大楼外墙有高为AB的广告牌,由距离大楼20米的点C(即CD=20米)观察它的顶部A的仰角是55°,底部B的仰角是42°,求AB的高度.(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)

【答案】解:由已知可得:∠ACD=55°,∠BCD=42°,CD=20,
又∵tan∠ACD= ,tan∠BCD=
∴AD=CDtan∠ACD,BD=CDtan∠BCD,
∴AB=AD﹣BD=CDtan∠ACD﹣CDtan∠BCD
≈20×1.43﹣20×0.90
≈10.6(m)
答:AB的高度为10.6m.
【解析】利用已知得出AD=CDtan∠ACD,BD=CDtan∠BCD,进而利用AB=AD﹣BD求出即可.
【考点精析】关于本题考查的关于仰角俯角问题,需要了解仰角:视线在水平线上方的角;俯角:视线在水平线下方的角才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网