题目内容
【题目】如图,抛物线y=x2+bx﹣c与x轴交A(﹣1,0)、B(3,0)两点,直线l与抛物线交于A、C两点,其中C点的横坐标为2.
(1)求抛物线及直线AC的函数表达式;
(2)点M是线段AC上的点(不与A,C重合),过M作MF∥y轴交抛物线于F,若点M的横坐标为m,请用m的代数式表示MF的长;
(3)在(2)的条件下,连接FA、FC,是否存在m,使△AFC的面积最大?若存在,求m的值;若不存在,说明理由.
【答案】(1)抛物线解析式为:y=x2﹣2x﹣3;直线AC的解析式为y=﹣x﹣1;
(2)MF=(﹣m﹣1)﹣( m2﹣2m﹣3)=﹣m2+m+2;
(3)当m=时,△AFC的面积最大为.
【解析】试题分析:(1)把点A和点B的坐标代入抛物线解析式求出b和c的值即可求出抛物线解析式;再把点C的横坐标代入已求出的抛物线解析式可求出其纵坐标,进而可求出直线AC的表达式;
(2)已知点M的横坐标为m,点M又在直线AB上,所以可求出其纵坐标,而点F在抛物线上,所以可求出其纵坐标,进而可用m的代数式表示MF的长;
(3)存在m,使△AFC的面积最大,设直线MF与x轴交于点H,作CE⊥MF于E,由S△AFC=MF(AH+CE),可得关于m的二次函数关系式,根据函数的性质即可求出△AFC的最大值.
试题解析:(1)把A(﹣1,0)、B(3,0)带入y=x2+bx﹣c,
得,解得: ,
∴解析式为:y=x2﹣2x﹣3,
把x=2带入y=x2﹣2x﹣3得y=﹣3,
∴C(2,﹣3),
设直线AC的解析式为y=kx+m,把A(﹣1,0)、C(2,﹣3)带入,
得,解得: ,
∴直线AC的解析式为y=﹣x﹣1;
(2)∵点M在直线AC上,
∴M的坐标为(m,﹣m﹣1);
∵点F在抛物线y=x2﹣2x﹣3上,
∴F点的坐标为(m,m2﹣2m﹣3),
∴MF=(﹣m﹣1)﹣( m2﹣2m﹣3)=﹣m2+m+2;
(3)存在m,使△AFC的面积最大,理由如下:
设直线MF与x轴交于点H,作CE⊥MF于E,
S△AFC=MF(AH+CE)=MF(2+1)=MF,
=(﹣m2+m+2),
=﹣(m﹣)2+≤
∴当m=时,△AFC的面积最大为.