题目内容

如图,在正方形ABCD中,点G为BC上任意一点,连接AG,过B、
D两点分别作BE⊥AG,DF⊥AG,垂足分别为E、F两点.求证:AF=BE.
证明见解析
根据正方形的性质,可以证得DA=AB,再根据同角的余角相等即可证得∠2=∠3,∠1=∠4,根据ASA即可证得两个三角形全等.即可求得AF="BE"
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网