题目内容
顺次连接矩形四条边的中点,得到的四边形的形状是▲.
菱形
根据菱形的性质及等腰梯形的性质解答.
解:已知:等腰梯形ABCD中,AD∥BC,AB=CD,E、F、G、H分别是各边的中点,
求证:四边形EFGH是菱形
证明:连接AC、BD
∵E、F分别是AB、BC的中点
∴EF=AC
同理FG=BD,GH=AC,EH=BD
又∵四边形ABCD是等腰梯形
∴AC=BD
∴EF=FG=GH=HE
∴四边形EFGH是菱形.
解:已知:等腰梯形ABCD中,AD∥BC,AB=CD,E、F、G、H分别是各边的中点,
求证:四边形EFGH是菱形
证明:连接AC、BD
∵E、F分别是AB、BC的中点
∴EF=AC
同理FG=BD,GH=AC,EH=BD
又∵四边形ABCD是等腰梯形
∴AC=BD
∴EF=FG=GH=HE
∴四边形EFGH是菱形.
练习册系列答案
相关题目