题目内容
【题目】如图,在等腰△ABC中,∠BAC=120°,DE是AC的垂直平分线,DE=1cm,求BD的长.
【答案】4cm
【解析】试题分析:连接AD,先根据等腰三角形两底角相等求出∠B、∠C,根据线段垂直平分线上的点到两端点的距离相等可得AD=CD,根据等腰三角形两底角相等可得∠C=∠CAD,再求出∠BAD,然后根据直角三角形30°角所对的直角边等于斜边的一半求解即可.
试题解析:解:连接AD.∵等腰△ABC中,∠BAC=120°,∴∠B=∠C=×(180°-120°)=30°.∵DE是AC的垂直平分线,∴AD=CD,∴∠C=∠CAD=30°,∴∠BAD=∠BAC-∠CAD=120°-30°=90°.∵DE=1cm,DE⊥AC,∴CD=2DE=2cm,∴AD=2cm.在Rt△ABD中,BD=2AD=2×2=4cm.
练习册系列答案
相关题目
【题目】地表以下岩层的温度T(℃)随着所处的深度h(km)的变化而变化,T与h之间在一定范围内近似地成一次函数关系.
(1)根据下表,求T(℃)与h(km)之间的函数关系式;
温度T(℃) | … | 90 | 160 | 300 | … |
深度h(km) | … | 2 | 4 | 8 | … |
(2)当岩层温度达到1770℃时,岩层所处的深度为多少?