题目内容

【题目】如图,在菱形ABCD中,点EFGH分别是边ABBCCDDA的中点,连接EFFGGHHE.若EH=2EF,则下列结论正确的是

A. ABEF B. AB=2EF C. ABEF D. ABEF

【答案】D

【解析】连接AC、BD交于点O,由菱形的性质可得OA=AC,OB=BD,ACBD,由中位线定理可得EH=BD,EF=AC,根据EH=2EF,可得OA=EF,OB=2EF,在RtAOB中,根据勾股定理即可求得AB=EF,由此即可得到答案.

连接AC、BD交于点O,

∵四边形ABCD是菱形,∴OA=AC,OB=BD,ACBD,

E、F、G、H分别是边AB、BC、CDDA的中点,

EH=BD,EF=AC,

EH=2EF,

OA=EF,OB=2OA=2EF,

RtAOB中,AB==EF,

故选D.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网