题目内容
【题目】已知点O是等腰直角三角形ABC斜边上的中点,AB=BC,E是AC上一点,连结EB.
(1) 如图1,若点E在线段AC上,过点A作AM⊥BE,垂足为M,交BO于点F.求证:OE=OF;
(2)如图2,若点E在AC的延长线上,AM⊥BE于点M,交OB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.
【答案】见解析
【解析】试题分析:(1)由三角形ABC是等腰直角三角形,AB=BC,得到∠BAC=∠ACB=45°,又由点O是AC边上的中点,得到∠BOE=∠AOF=90°,∠ABO=∠CBO=45°,从而得到∠BAC=∠ABO,OB=OA,又由AM⊥BE,得到∠MEA+∠MAE=90°=∠AFO+∠MAE,
故有∠MEA=∠AFO,得到Rt△BOE≌Rt△AOF,从而得到结论;
(2)同(1)可证明Rt△BOE≌Rt△AOF,从而得到OE=OF.
试题解析:(1)证明:∵三角形ABC是等腰直角三角形,AB=BC,
∴∠BAC=∠ACB=45°
又点O是AC边上的中点,
∴∠BOE=∠AOF=90°,∠ABO=∠CBO=45°
∴∠BAC=∠ABO,∴OB=OA,
又∵AM⊥BE,
∴∠MEA+∠MAE=90°=∠AFO+∠MAE,
∴∠MEA=∠AFO,
∴Rt△BOE≌Rt△AOF,∴OE=OF;
(2)OE=OF成立;
证明:∵三角形ABC是等腰直角三角形,AB=BC,
∴∠BAC=∠ACB=45°
又点O是AC边上的中点,
∴∠BOE=∠AOF=90°,∠ABO=∠CBO=45°
∴∠BAC=∠ABO,∴OB=OA,
又∵AM⊥BE,
∴∠F+∠MBF=90°=∠B+∠OBE,
又∵∠MBF=∠OBE,∴∠F=∠E,
∴Rt△BOE≌Rt△AOF,
∴OE=OF.