题目内容
【题目】已知,如图,点,,,在同一条直线上,且,∠A=∠FDE,在①,②∠CBA=∠E,③∠C=∠F中,请选择其中一个条件,证明△ABC≌△DEF.
(1)你选择的条件是________(只需填写序号);
(2)证明.
【答案】(1)见解析;(2)见解析
【解析】
要判定△ABC≌△DEF,已知AD=BE,可证AB=DE,又已知∠A=∠FDE,具备了一组边和一组角对应相等,故可分别选择其中一个条件①AC=DF,②∠CBA=∠E,③∠C=∠F中,分别根据SAS,ASA,AAS证明△ABC≌△DEF.
(1)添加条件①AC=DF.
证明:∵AD=BE,
∴AD+BD=BE+BD,
即AB=DE.
在△ABC和△DEF中,
AB=DE,
∠A=∠FDE,
AC=DF,
∴△ABC≌△DEF(SAS).
(2)添加条件②∠CBA=∠E.
证明:∵AD=BE,
∴AD+BD=BE+BD,
即AB=DE.
在△ABC和△DEF中,
∠A=∠FDE,
AB=DE,
∠CBA=∠E,
∴△ABC≌△DEF(ASA).
(3)添加条件③∠C=∠F.
证明:∵AD=BE,
∴AD+BD=BE+BD,
即AB=DE.
在△ABC和△DEF中,
∠A=∠FDE,
∠C=∠F,
AB=DE,
∴△ABC≌△DEF(AAS).
【题目】某校要从小王和小李两名同学中挑选一人参加全市知识竞赛,在最近的五次选拔测试中,他俩的成绩分别如下表:
姓 名 | 1 | 2 | 3 | 4 | 5 |
小 王 | 60 | 75 | 100 | 90 | 75 |
小 李 | 70 | 90 | 80 | 80 | 80 |
根据上表解答下列问题:
(1)完成下表:
姓 名 | 平均成绩(分) | 中位数(分) | 众数(分) | 方差 |
小 王 | 75 | 190 | ||
小 李 | 80 | 80 |
(2)在这五次测试中,成绩比较稳定的同学是谁?若将80分以上(含80分)的成绩视为秀,则小王、小李在这五次测试中的优秀率各是多少?
(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为选谁参加比赛比较合适?说明你的理由.