题目内容
【题目】如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点.∠APC=∠CPB=60°.
(1)判断△ABC的形状: ;
(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;
(3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.
【答案】(1)等边三角形;(2)PA+PB=PC;证明见解析(3)当点P为的中点时,四边形APBC面积最大值为
【解析】
(1)根据圆周角的定义可得圆周角相等,他们所对的弦也相等得出AC=BC,同弧所对的圆周角相等可得∠BAC=∠BPC=60°,有一个角是60°的等腰三角形是等边三角形,可得三角形ABC为等边三角形.(2)在PC上截取PD=PA,连接AD,得出△PAD为等边三角形,再根据已知条件得出△PAB≌△DAC,得出PC=DC,PD+DC=PC,等量代换得出结论.(3)当点P为的中点时,四边形APBC的面积最大.理由,如图过点P作PE⊥AB,CF⊥AB垂足分别为点E,点F,四边形APBC的面积为△APB与△ACB的和,底相同,当PE+CF最大时,四边形的面积最大,因为直径是圆中最大的弦,即PE+CP=直径,即P为的中点时,面积最大.
(1)等边三角形;
由圆周角定理得,∠ABC=∠APC=60°,∠BAC=∠CPB=60°,
∴△ABC是等边三角形;
故答案为:等边三角形;
(2)PA+PB=PC.
证明:如图1,在PC上截取PD=PA, 连接AD.
∵∠APC=60°.
∴△PAD是等边三角形.
∴PA=AD, ∠PAD=60°,
又∵∠BAC=60°,
∴∠PAB=∠DAC.
∵AB=AC.
∴△PAB≌△DAC.
∴PB=DC.
∵PD+DC=PC,
∴PA+PB=PC.
(3)当点P为的中点时,四边形APBC面积最大.
理由如下:如图2,过点P作PE⊥AB,垂足为E,
过点C作CF⊥AB,垂足为F.
∵S△PAB=AB·PE.S△ABC=AB·CF.
∴S四边形APBC=AB(PE+CF).
当点P为的中点时,PE+CF=PC.PC为⊙O的直径.
∴此时四边形∠PAD=60°∠PAD=60°面积最大.
又∵⊙O的半径为1,
∴其内接正三角形的边长AB=.
∴S四边形APBC=×2×=.