题目内容
【题目】如图 1,直线 y=﹣x+6 与 y 轴于点 A,与 x 轴交于点 D,直线 AB 交 x 轴于点 B,AOB 沿直线 AB 折叠,点 O 恰好落在直线 AD 上的点 C 处.
(1)求点 B 的坐标;
(2)如图 2,直线 AB 上的两点 F、G,DFG 是以 FG 为斜边的等腰直角三角形,求点 G 的坐标;
(3)如图 3,点 P 是直线 AB 上一点,点 Q 是直线 AD 上一点,且 P、Q 均在第四象限,点 E 是 x 轴上一点,若四边形 PQDE 为菱形,求点 E 的坐标.
【答案】(1)B的坐标为(3,0);(2)G的坐标为(2,2);(3)E的坐标为(﹣2,0).
【解析】
(1)设BC=OB=x,则BD=8﹣x,在RtBCD中,根据BC2+CD2=BD2,构建方程即可解决问题;
(2)作GM⊥x轴于M,FN⊥x轴于N,由DMG≌FND(AAS),推出GM=DN,DM=FN,设GM=DM=m,DM=FN=n,根据G、F在直线AB上,构建方程组即可解决问题;
(3)如图,设Q(a,﹣a+6),因为PQ∥x轴,且点P在直线y=﹣2x+6上,推出P(a,﹣a+6),PQ=a,作QH⊥x轴于H.由勾股定理可知:QH:DH:DQ=3:4:5,想办法构建方程即可解决问题.
解:(1)对于直线y=﹣x+6,
令x=0,得到y=6,可得A(0,6),
令y=0,得到x=8,可得D(8,0),
∴AC=AO=6,OD=8,AD==10,
∴CD=AD﹣AC=4,设BC=OB=x,则BD=8﹣x,
在RtBCD中,∵BC2+CD2=BD2,
∴x2+42=(8﹣x)2,
∴x=3,
∴B(3,0).
(2)设直线AB的解析式为y=kx+6,
∵B(3,0),
∴3k+6=0,
∴k=﹣2,
∴直线AB的解析式为y=﹣2x+6,
作GM⊥x轴于M,FN⊥x轴于N,
∵DFG是等腰直角三角形,
∴DG=FD,∠1=∠2,∠DMG=∠FND=90°,
∴DMG≌FND(AAS),
∴GM=DN,DM=FN,
设GM=DN=m,DM=FN=n,
∵G、F在直线AB上,
则:m=﹣2(8﹣n)+6,﹣n=﹣2(8﹣m)+6,
解得:m=2,n=6
∴OM=OD﹣DM=2,GM=2,
∴G(2,2).
(3)①当点E在y轴左侧时,
如图,设Q(a,﹣a+6),
∵PQ∥x轴,且点P在直线y=﹣2x+6上,
∴P(a,﹣a+6),
∴PQ=a,作QH⊥x轴于H.
∴DH=a﹣8,QH=a﹣6,
∴=,
由勾股定理可知:QH:DH:DQ=3:4:5,
∴QH=DQ=a,
∴a=a﹣6,
∴a=16,
∴Q(16,﹣6),P(6,﹣6),
∵ED∥PQ,ED=PQ,D(8,0),
∴E(﹣2,0).
②当点E在y轴右侧时,
同理可得:点E(3.4,0)(舍去);
故点E的坐标为(﹣2,0).