题目内容
【题目】如图,将矩形ABCD绕点C顺时针旋转90°得到矩形FGCE,点M、N分别是BD、GE的中点,若BC=14,CE=2,则MN的长( )
A.7
B.8
C.9
D.10
【答案】D
【解析】解:连接AC、CF、AF,如图所示:
∵矩形ABCD绕点C顺时针旋转90°得到矩形FFCE,
∴∠ABC=90°,
∴AC= = =10 ,
AC=BD=GE=CF,AC与BD互相平分,GE与CF互相平分,
∵点M、N分别是BD、GE的中点,
∴M是AC的中点,N是CF的中点,
∴MN是△ACF的中位线,
∴MN= AF,
∵∠ACF=90°,
∴△ACF是等腰直角三角形,
∴AF= AC=10 × =20,
∴MN=10.
故选:D.
【考点精析】本题主要考查了等腰直角三角形和矩形的性质的相关知识点,需要掌握等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°;矩形的四个角都是直角,矩形的对角线相等才能正确解答此题.
练习册系列答案
相关题目