题目内容
【题目】直线y=﹣x+6与x轴交于A,与y轴交于B,直线CD与y轴交于C(0,2)与直线AB交于D,过D作DE⊥x轴于E(2,0).
(1)求直线CD的函数解析式;
(2)P是x轴上一动点,过P作x轴的垂线,分别与直线AB,CD交于M,N,设MN的长为d,P点的横坐标为t,求出d与t之间的函数关系式;
(3)在(2)的条件下,当t为何值时,以M,N,E,D为顶点的四边形是平行四边形.(直接写出结果)
【答案】(1)直线CD的函数解析式为y=x+2;(2)当t<2时,d=﹣2t+4;当t≥2时,d=2t﹣4;(3)当t的值为0或4时,以M,N,E,D为顶点的四边形是平行四边形.
【解析】
(1)由条件可先求得D点坐标,再利用待定系数法可求得直线CD的函数解析式;
(2)用t可分别表示出M、N的坐标,则可表示出S与t之间的关系式;
(3)由条件可知MN∥DE,利用平行四边形的性质可知MN=DE,由(2)的关系式可得到关于t的方程,可求得t的值.
(1)直线CD与y轴相交于C,
可设直线CD解析式为y=kx+2,把x=2代入中可得y=4,
∴D(2,4),
把D点坐标代入中可得:2k+2=4,
∴k=1,直线CD的函数解析式为y=x+2;
(2)根据题意可以知道,OA=t,
把x=t代入y=﹣x+6中可得y=﹣t+6
∴M(t,﹣t+6),
把x=t代入y=x+2中可得y=t+2,
∴N(t,t+2),
当t<2时,d=﹣t+6﹣(t+2)=﹣2t+4;,
当t≥2时,d=t+2﹣(﹣t+6)=2t﹣4;
(3)由题意可知MN∥DE,
∵以M,N,E,D为顶点的四边形是平行四边形,
∴MN=DE=4,
∴|2t﹣4|=4,解得t=0或t=4,
即当t的值为0或4时,以M,N,E,D为顶点的四边形是平行四边形.