题目内容
【题目】如图,在四边形ABCD中,AC=BD,E、F、G、H分别是AB、BC、CD、DA的中点,且EG、FH交于点O.若AC=4,则EG2+FH2=______.
【答案】16
【解析】
根据三角形的中位线定理和菱形的判定,可得顺次连接对角线相等的四边形各边中点所得四边形是菱形;根据菱形的性质得到EG⊥HF,且EG=2OE,FH=2OH.在Rt△OEH中,根据勾股定理得到OE2+OH2=EH2=4,再根据等式的性质,在等式的两边同时乘以4,根据4=22,把等式进行变形,并把EG=2OE,FH=2OH代入变形后的等式中,即可求出EG2+FH2的值.
∵E、F、G、H分别是线段AB、BC、CD、AD的中点,
∴EH、FG分别是△ABD、△BCD的中位线,
EF、HG分别是△ABC、△ACD的中位线,
根据三角形的中位线的性质知,EH=FGBD,EF=HGAC.
又∵AC=BD,
∴EH=FG=EF=HG,
∴四边形EFGH是菱形,
∴EG⊥FH,EG=2OE,FH=2OH.
在Rt△OEH中,根据勾股定理得:OE2+OH2=EH2=4,
等式两边同时乘以4得:4OE2+4OH2=4×4=16,
∴(2OE)2+(2OH)2=16,
即EG2+FH2=16.
故答案为:16.
练习册系列答案
相关题目
【题目】某中学初三(1)班共有40名同学,在一次30秒跳绳测试中他们的成绩统计如下表:
跳绳数/个 | 81 | 85 | 90 | 93 | 95 | 98 | 100 |
人 数 | 1 | 2 | 8 | 11 | 5 |
将这些数据按组距5(个)分组,绘制成如图的频数分布直方图(不完整).
(1)将表中空缺的数据填写完整,并补全频数分布直方图;
(2)这个班同学这次跳绳成绩的众数是个,中位数是个;
(3)若跳满90个可得满分,学校初三年级共有720人,试估计该中学初三年级还有多少人跳绳不能得满分.