题目内容
【题目】抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b<0;其中正确的个数有( )
A.2B.3C.4D.5
【答案】A
【解析】
利用抛物线开口方向得到a>0,利用抛物线的对称轴方程得到b=2a>0,利用抛物线与y轴的交点位置得到c<0,则可对①进行判断;利用抛物线与x轴交点个数可对②进行判断;利用抛物线的对称性得到抛物线与x轴的另一个交点坐标为(﹣3,0),则可对③进行判断;根据二次函数的性质,通过比较两点到对称轴的距离可对④进行判断;利用b=2a得到5a﹣2b=a>0,则可对⑤进行判断.
解:∵抛物线开口向上,
∴a>0,
∵抛物线的对称轴为直线x=﹣=﹣1,
∴b=2a>0,
∵抛物线与y轴的交点在x轴下方,
∴c<0,
∴abc<0,所以①错误;
∵抛物线与x轴有2个交点,
∴△=b2﹣4ac>0,所以②正确;
∵抛物线的对称轴为直线x=﹣1,抛物线与x轴的一个交点坐标为(1,0),
∴抛物线与x轴的另一个交点坐标为(﹣3,0),
∴9a﹣3b+c=0,所以③正确;
∵点(﹣0.5,y1)到直线x=﹣1的距离比点(﹣2,y2)到直线x=﹣1的距离小,
而抛物线开口向上,
∴y1<y2;所以④错误;
∵b=2a,
∴5a﹣2b=5a﹣4a=a>0,所以⑤错误.
故选:A.
【题目】如图,⊙O的直径AB=4cm,点C为线段AB上一动点,过点C作AB的垂线交⊙O于点D,E,连结AD,AE.设AC的长为xcm,△ADE的面积为ycm2.
小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小东的探究过程,请补充完整:
(1)确定自变量x的取值范围是 ;
(2)通过取点、画图、测量、分析,得到了y与x的几组对应值,如下表:
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 |
y/cm2 | 0 | 0.7 | 1.7 | 2.9 |
| 4.8 | 5.2 | 4.6 | 0 |
(3)如图,建立平面直角坐标系xOy,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(4)结合画出的函数图象,解决问题:当△ADE的面积为4cm2时,AC的长度约为 cm.
【题目】某公司招聘一名职员,先对应聘者进行笔试考核,笔试进入前两名的选手再进入面试方面的考核,最终在参加面试的两人中录取一人.该公司将应聘者的笔试成绩划分了4个等级:设应聘者的成绩为x(单位:分),当60≤x<70时为不合格;当70≤x<80时为合格;当80≤x<90时为良好;当90≤x≤100时为优秀.下面是参加笔试的10名应聘者的成绩:86 75 67 86 92 75 82 90 86 78
(1)这10名应聘者的笔试成绩的中位数是_______,众数是_______;
(2)请将下面表示上述4个等级的统计图补充完整;
(3)该公司对进入笔试前两名的甲、乙二人进行了面试考核,面试中包括形体、口才、人际交往、创新能力,他们的成绩(百分制)如下表:
候选人 | 面试项目 | |||
形体 | 口才 | 人际交往 | 创新能力 | |
甲 | 86 | 90 | 95 | 90 |
乙 | 95 | 85 | 90 | 92 |
如果公司根据经营性质和岗位要求,以面试成绩中形体占10%,口才占20%,人际交往40%,创新能力占30%确定成绩,那么你认为该公司应该录取谁?请通过计算说明理由.