题目内容

已知关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有两个不相等的实数根.
(1)求实数k的取值范围;
(2)0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.
(1)k<1;(2)是,4.

试题分析:(1)方程有两个不相等的实数根,必须满足△=b2﹣4ac>0,由此可以得到关于k的不等式,然后解不等式即可求出实数k的取值范围;
(2)利用假设的方法,求出它的另一个根.
试题解析:(1)∵△=[2(k﹣1)]2﹣4(k2﹣1)=4k2﹣8k+4﹣4k2+4=﹣8k+8,
又∵原方程有两个不相等的实数根,
∴﹣8k+8>0,
解得k<1,
即实数k的取值范围是k<1;
(2)假设0是方程的一个根,
则代入原方程得02+2(k﹣1)•0+k2﹣1=0,
解得k=﹣1或k=1(舍去),
即当k=﹣1时,0就为原方程的一个根,
此时原方程变为x2﹣4x=0,
解得x1=0,x2=4,
所以它的另一个根是4.
考点: 根的判别式.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网