题目内容
【题目】在矩形ABCD中,AB=5cm,BC=10cm,点P从点A出发,沿AB边向点B以每秒1cm的速度移动,同时点Q从点B出发沿BC边向点C以每秒2cm的速度移动,P、Q两点在分别到达B、C两点时就停止移动,设两点移动的时间为t秒,解答下列问题:
(1)如图1,当t为几秒时,△PBQ的面积等于4cm2?
(2)如图2,以Q为圆心,PQ为半径作⊙Q.在运动过程中,是否存在这样的t值,使⊙Q正好与四边形DPQC的一边(或边所在的直线)相切?若存在,求出t值;若不存在,请说明理由.
【答案】(1)t=1秒或4秒;(2)t=0秒或(﹣15+)秒.
【解析】
(1)由题意可知PA=t,BQ=2t,从而得到PB=5﹣t,BQ=2t,然后根据△PQB的面积=4cm2列方程求解即可;
(2)当t=0时,点P与点A重合时,点B与点Q重合,此时圆Q与PD相切;当⊙Q正好与四边形DPQC的DC边相切时,由圆的性质可知QC=QP,然后依据勾股定理列方程求解即可;
解:(1)∵当运动时间为t秒时,PA=t,BQ=2t,
∴PB=5﹣t,BQ=2t.
∵△PBQ的面积等于4cm2,
∴PBBQ=(5﹣t)2t.
∴(5﹣t)2t=4.
解得:t1=1,t2=4.
答:当t为1秒或4秒时,△PBQ的面积等于4cm2;
(2)由题意可知圆Q与PQ、CQ不相切.下面分两种情况讨论:
(Ⅰ)如图1所示:当t=0时,点P与点A重合时,点B与点Q重合.
∵∠DAB=90°,
∴∠DPQ=90°.
∴DP⊥PQ.
∴DP为圆Q的切线.
(Ⅱ)当⊙Q正好与四边形DPQC的DC边相切时,如图2所示.
由题意可知:PB=5﹣t,BQ=2t,PQ=CQ=10﹣2t.
在Rt△PQB中,由勾股定理可知:PQ2=PB2+QB2,即(5﹣t)2+(2t)2=(10﹣2t)2.
解得:t1=﹣15+,t2=﹣15﹣(舍去).
综上所述可知当t=0秒或t=(﹣15+)秒时,⊙Q与四边形DPQC的一边相切.
【题目】某商场经营某种品牌的计算器,购进时的单价是20元,根据市场调查:在一段时间内,销售单价是30元时,销售量是600个,而销售单价每上涨1元,就会少售出10个.
(1)不妨设该种品牌计算器的销售单价为x元(x>30),请你分别用x的代数式来表示销售量y个和销售该品牌计算器获得利润w元,并把结果填写在表格中:
销售单价(元) | x(x>30) |
销售量y(个) |
|
销售计算器获得利润w(元) |
|
(2)在第(1)问的条件下,若计算器厂规定该品牌计算器销售单价不低于35元,且商场要完成不少于500个的销售任务,求:商场销售该品牌计算器获得最大利润是多少?