题目内容
【题目】如图,在四边形ABCD中,BC>BA,AD=DC,
(1)若BD⊥CD,∠C=60°,BC=10,求AD的长;
(2)若BD平分∠ABC,求证:∠A+∠C=180°。
【答案】(1)AD=5;(2)证明见解析;
【解析】
(1)由“在直角三角形中, 30°所对的直角边是斜边的一半”可得,CD=BC=5,再由AD=DC,可求出AD的长.
(2)先在线段BC上截取BE=BA,连接DE,根据BD平分∠ABC,可得∠ABD=∠EBD,
根据,可判定△ABD≌△EBD,根据全等三角形的性质可得:AD=ED,∠A=∠BED.再根据AD=CD,等量代换可得ED=CD,根据等边对等角可得:∠DEC=∠C.
由∠BED+∠DEC=180°,可得∠A+∠C=180°.
(1)∵BD⊥CD,
∴∠BDC=90°,
∵∠C=60°,
∴∠DBC=30°,
又BC=10,
∴CD=BC=5,
即AD=DC=5.
(2)证明:在线段BC上截取BE=BA,连接DE,如图所示,
∵BD平分∠ABC,
∴∠ABD=∠EBD,
在△ABD和△EBD中,
,
∴△ABD≌△EBD(SAS),
∴AD=ED,∠A=∠BED.
∵AD=CD,
∴ED=CD,
∴∠DEC=∠C.
∵∠BED+∠DEC=180°,
∴∠A+∠C=180°.
练习册系列答案
相关题目