题目内容

【题目】如图,已知抛物线y=ax2+ x+c与x轴交于A,B两点,与y轴交于丁C,且A(2,0),C(0,﹣4),直线l:y=﹣ x﹣4与x轴交于点D,点P是抛物线y=ax2+ x+c上的一动点,过点P作PE⊥x轴,垂足为E,交直线l于点F.

(1)试求该抛物线表达式;
(2)如图(1),四边形PCOF是平行四边形,求P点的坐标;
(3)如图(2),过点P作PH⊥y轴,垂足为H,连接AC.

①求证:△ACD是直角三角形;
②试问当P点横坐标为何值时,使得以点P、C、H为顶点的三角形与△ACD相似?

【答案】
(1)

解:由题意得: ,解得:

∴抛物线的表达式为y= x2+ x﹣4.


(2)

解:设P(m, m2+ m﹣4),则F(m,﹣ m﹣4).

∴PF=(﹣ m﹣4)﹣( m2+ m﹣4)=﹣ m2 m.

∵PE⊥x轴,

∴PF∥OC.

∴PF=OC时,四边形PCOF是平行四边形.

∴﹣ m2 m=4,解得:m=﹣ 或m=﹣8.

当m=﹣ 时, m2+ m﹣4=﹣

当m=﹣8时, m2+ m﹣4=﹣4.

∴点P的坐标为(﹣ ,﹣ )或(﹣8,﹣4).


(3)

解:①证明:把y=0代入y=﹣ x﹣4得:﹣ x﹣4=0,解得:x=﹣8.

∴D(﹣8,0).

∴OD=8.

∵A(2,0),C(0,﹣4),

∴AD=2﹣(﹣8)=10.

由两点间的距离公式可知:AC2=22+42=20,DC2=82+42=80,AD2=100,

∴AC2+CD2=AD2

∴△ACD是直角三角形,且∠ACD=90°.

②由①得∠ACD=90°.

当△ACD∽△CHP时, = ,即 = =

解得:n=0(舍去)或n=﹣5.5或n=﹣10.5.

当△ACD∽△PHC时, = ,即 = 或即 =

解得:n=0(舍去)或n=2或n=﹣18.

综上所述,点P的横坐标为﹣5.5或﹣10.5或2或﹣18时,使得以点P、C、H为顶点的三角形与△ACD相似.


【解析】(1)将点A和点C的坐标代入抛物线的解析式可得到关于a、c的方程组,然后解方程组求得a、c的值即可;(2)设P(m, m2+ m﹣4),则F(m,﹣ m﹣4),则PF=﹣ m2 m,当PF=OC时,四边形PCOF是平行四边形,然后依据PF=OC列方程求解即可;(3)①先求得点D的坐标,然后再求得AC、DC、AD的长,最后依据勾股定理的逆定理求解即可;②分为△ACD∽△CHP、△ACD∽△PHC两种情况,然后依据相似三角形对应成比例列方程求解即可
【考点精析】根据题目的已知条件,利用相似三角形的应用的相关知识可以得到问题的答案,需要掌握测高:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决;测距:测量不能到达两点间的举例,常构造相似三角形求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网