题目内容
【题目】在小学,我们知道正方形具有性质“四条边都相等,四个内角都是直角”,请适当利用上述知识,解答下列问题:
已知:如图,在正方形ABCD中,AB=4,点G是射线AB上的一个动点,以DG为边向右作正方形DGEF,作EH⊥AB于点H.
(1)填空:∠AGD+∠EGH= °;
(2)若点G在点B的右边.
①求证:△DAG≌△GHE;
②试探索:EH﹣BG的值是否为定值,若是,请求出定值;若不是,请说明理由.
(3)连接EB,在G点的整个运动(点G与点A重合除外)过程中,求∠EBH的度数;
【答案】(1)90;(2)①答案见解析;②EH﹣BG的值是定值4;(3)45°.
【解析】试题分析:(1)根据正方形的性质得到∠DGE=90°,由平角的定义即可得到结论;
(2)①根据垂直的定义得到∠GHE=90°,根据余角的性质得到∠GEH=∠AGD,根据正方形的性质得到∠DAG=90°,DG=GE,求得∠DAG=∠GHE,根据全等三角形的判定定理即可得到结论;②根据全等三角形的性质得到AG=EH,根据线段的和差即可得到结论;
(3)下面分两种情况讨论:( I)当点G在点B的左侧时,如图1,根据全等三角形的性质得到GH=DA=AB,EH=AG,于是得到GB+BH=AG+GB,推出△BHE是等腰直角三角形,根据等腰直角三角形的性质得到∠EBH=45°;( II)如图2,当点G在点B的右侧时,根据全等三角形的想知道的GH=DA=AB,EH=AG,于是得到AB+BG=BG+GH,推出△BHE是等腰直角三角形,根据等腰直角三角形的性质得到∠EBH=45°;( III)当点G与点B重合时,如图3,根据全等三角形的性质得到GH=DA=AB,EH=AG=AB,推出△GHE(即△BHE)是等腰直角三角形,于是得到∠EBH=45°即可得到结论.
试题解析:解: (1)90;
(2)①∵EH⊥AB,
∴∠GHE90°,
∴∠GEH+∠EGH90°,
又∠AGD+∠EGH90°,
∴∠GEH∠AGD,
∵四边形ABCD与四边形DGEF都是正方形,
∴∠DAG90°,DGGE,
∴∠DAG∠GHE,
在△DAG和△GHE中,
,
∴△DAG≌△GHE(AAS);
②EH﹣BG的值是定值,
理由如下:由①证得:△DAG≌△GHE,
∴AGEH,
又AGABBG,AB4,
∴EHAB+BG,EH﹣BGAB4;
(3)下面分两种情况讨论:
(I)当点G在点B的左侧时,如图1,
同(2)①可证得:△DAG≌△GHE,
∴GHDAAB,EHAG,
∴GB+BHAG+GB,
∴BHAGEH,又∠GHE90°
∴△BHE是等腰直角三角形,
∴∠EBH45°;
( II) 如图2,当点G在点B的右侧时,
由(2)①证得:△DAG≌△GHE.
∴GHDAAB,EHAG,
∴AB+BGBG+GH,
∴AGBH,又EHAG
∴EHHB,又∠GHE90°
∴△BHE是等腰直角三角形,
∴∠EBH45°;
( III)当点G与点B重合时,
如图3,同理可证:△DAG≌△GHE,
∴GHDAAB,EHAGAB,
∴△GHE(即△BHE)是等腰直角三角形,
∴∠EBH45°
综上,在G点的整个运动(点G与点A重合除外)过程中,∠EBH都等于45°。