题目内容
【题目】如图,一楼房AB后有一假山,山坡斜面CD与水平面夹角为30°,坡面上点E处有一亭子,测得假山坡脚C与楼房水平距离BC=10米,与亭子距离CE=20米,小丽从楼房顶测得点E的俯角为45°.求楼房AB的高(结果保留根号).
【答案】楼房AB的高为(20+10)米.
【解析】试题分析:
如图,过点E作EF⊥BC于点F,作EH⊥AB于点H,先在Rt△CEF中已知条件解得:EF和CF的长,从而可得BF和HB的长,再由HE=BF可得HE的长;然后在Rt△AHE中由HE的长求得AH的长,最后由AB=AH+HB可得AB的长.
试题解析:
过点E作EF⊥BC于点F,EH⊥AB于点H.
∴∠EFC=∠EHA=∠EHB=∠HBC=90°.
∴四边形HBFE是矩形,
∴HE=BF,HB=EF,
∵在Rt△CEF中,CE=20,∠ECF=30°
∴EF=CE=10,CF=CEcos30°=,
∴HB=EF=10,BF=BC+CF=,
∴HE=BF=,
∵在Rt△AHE中,∠HAE=90°-45°=45°,
∴AH=HE=,
∴AB=AH+BH=10+10+10=20+10(米)
答:楼房AB的高为(20+10)米.
练习册系列答案
相关题目
【题目】我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.
平均分(分) | 中位数(分) | 众数(分) | 方差() | |
初中部 | a | 85 | b | |
高中部 | 85 | c | 100 | 160 |
(1)根据图示计算出a、b、c的值;
(2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?
(3)计算初中代表队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.