题目内容
【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.
【答案】(1)b=﹣2a,顶点D的坐标为(﹣,﹣);(2);(3) 2≤t<.
【解析】试题分析:(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;
(2)把点代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得的面积即可;
(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.
试题解析:(1)∵抛物线有一个公共点M(1,0),
∴a+a+b=0,即b=2a,
∴抛物线顶点D的坐标为
(2)∵直线y=2x+m经过点M(1,0),
∴0=2×1+m,解得m=2,
∴y=2x2,
则
得
∴(x1)(ax+2a2)=0,
解得x=1或
∴N点坐标为
∵a<b,即a<2a,
∴a<0,
如图1,设抛物线对称轴交直线于点E,
∵抛物线对称轴为
设△DMN的面积为S,
(3)当a=1时,
抛物线的解析式为:
有
解得:
∴G(1,2),
∵点G、H关于原点对称,
∴H(1,2),
设直线GH平移后的解析式为:y=2x+t,
x2x+2=2x+t,
x2x2+t=0,
△=14(t2)=0,
当点H平移后落在抛物线上时,坐标为(1,0),
把(1,0)代入y=2x+t,
t=2,
∴当线段GH与抛物线有两个不同的公共点,t的取值范围是
【题型】解答题
【结束】
24
【题目】在△ABC中,AB=AC,点D是直线BC上的一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE,设∠BAC=α,∠BCE=β.
(1)如图①,当点D在线段BC上,如果α=60°,β=120°;
如图②,当点D在线段BC上,如果α=90°,β=90°
如图③,当点D在线段BC上,如果α,β之间有什么样的关系?请直接写出.
(2)如图④,当点D在射线BC上,(1)中结论是否成立?请说明理由.
(3)如图⑤,当点D在射线CB上,且在线段BC外,(1)中结论是否成立?若不成立,请直接写出你认为正确的结论.
【答案】(1)α+β=180°;(2)(1)中结论是成立;(3)(1)中结论是不成立,成立的是:∠BAC+∠CBE=180°.
【解析】试题分析:(1)先判断出△ABD≌△ACE得出∠ABD=∠ACE,再用三角形的内角和即可得出结论;
(2)同(1)的方法即可得出结论;
(3)先判断出△ABE≌△ACD,再用三角形的内角和即可得出结论.
试题解析:解:(1)α+β=180°.理由如下:
如图③.∵∠BAC=∠DAE,∴∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE.在△ABC中,∠BAC+∠B+∠ACB=180°,∴∠BAC+∠ACE+∠ACB=∠BAC+∠BCE=180°,即:α+β=180°;
(2)(1)中结论是成立,理由如下:
如图④,连接CE.∵∠BAC=∠DAE,∴∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE.在△ABC中,∠BAC+∠B+∠ACB=180°,∴∠BAC+∠ACE+∠ACB=∠BAC+∠BCE=180°,即:α+β=180°;
(3)(1)中结论是不成立,成立的是:∠BAC+∠CBE=180°.理由如下:
如图⑤,连接BE.∵∠BAC=∠DAE,∴∠BAE=∠CAD.在△ABE和△ACE中,,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD.在△ABC中,∠BAC+∠ABC+∠ACD=180°,∴∠BAC+∠ABC+∠ABE=∠BAC+∠CBE=180°,即:∠BAC+∠CBE=180°.