题目内容
【题目】如图,在△ABC中,分别以AC,BC为边作等边△ACD和等边△BCE.设△ACD,△BCE,△ABC的面积分别是S1,S2,S3,现有如下结论:
①S1∶S2=AC2∶BC2;②连接AE,BD,则△BCD≌△ECA;③若AC⊥BC,则S1·S2=S23.
其中结论正确的序号是__________.
【答案】①②③
【解析】
①根据相似三角形面积的比等于相似比的平方判断;
②根据SAS即可求得全等;
③根据面积公式即可判断.
①S1:S2=AC2:BC2正确,
∵△ADC与△BCE是等边三角形,
∴△ADC∽△BCE,
∴S1:S2=AC2:BC2.
②△BCD≌△ECA正确,
∵△ADC与△BCE是等边三角形,
∴∠ACD=∠BCE=60°
∴∠ACD+∠ACB=∠BCE+∠ACD,
即∠ACE=∠DCB,
在△ACE与△DCB中,
,
∴△BCD≌△ECA(SAS).
③若AC⊥BC,则S1S2=S32正确,
设等边三角形ADC的边长=a,等边三角形BCE边长=b,则△ADC的高=a,△BCE的高=b,
∴S1=aa=a2,S2=bb=b2,
∴S1S2=a2b2=a2b2,
∵S3=ab,
∴S32=a2b2,
∴S1S2=S32.
练习册系列答案
相关题目