题目内容
【题目】为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.
A型 | B型 | |
价格(万元/台) | a | b |
处理污水量(吨/月) | 240 | 180 |
(1)求a,b的值;
(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;
(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.
【答案】(1) a的值为12,b的值为10;(2) 所有购买方案为:当A型号为0,B型号为10台;当A型号为1台,B型号为9台;当A型号为2台,B型号为8台;有3种购买方案;(3) 公司最省钱的一种购买方案为:购买A型处理机1台,B型处理机9台.
【解析】试题分析:(1)购买A型的价格是a万元,购买B型的设备b万元,根据购买一台A型号设备比购买一台B型号设备多2万元,购买2台A型设备比购买3台B型号设备少6万元,可列方程组求解.
(2)设购买A型号设备m台,则B型为(10-m)台,根据使治污公司购买污水处理设备的资金不超过105万元,进而得出不等式;
(3)利用(2)中所求,进而分析得出答案.
试题解析:(1)购买A型的价格是a万元,购买B型的设备b万元,
,
解得: .
故a的值为12,b的值为10;
(2)设购买A型号设备m台,
12m+10(10﹣m)≤105,
解得:m≤,
故所有购买方案为:当A型号为0,B型号为10台;
当A型号为1台,B型号为9台;
当A型号为2台,B型号为8台;有3种购买方案;
(3)当x=0,10﹣x=10时,每月的污水处理量为:200×10=2000吨<2040吨,不符合题意,应舍去;
当x=1,10﹣x=9时,每月的污水处理量为:240+200×9=2040吨=2040吨,符合条件,
此时买设备所需资金为:12+10×9=102万元;
当x=2,10﹣x=8时,每月的污水处理量为:240×2+200×8=2080吨>2040吨,符合条件,
此时买设备所需资金为:12×2+10×8=104万元;
所以,为了节约资金,该公司最省钱的一种购买方案为:购买A型处理机1台,B型处理机9台.
【题目】某公司在两仓库分别有机器16台和12台,现要运往甲、乙两地,其中甲地需要15台,乙地需要13台,已知两地仓库运往甲,乙两地机器的费用如下面的左表所示.
设从A仓库调x台机器去甲地,请用含x的代数式补全下面的右表;
机器调运费用表机器调运方案表
出发地 目的地运费台元 | A | B | 出发地 目的地机器台 | A | B | 合计 | |
甲 | 500 | 300 | 甲地 | x | 15 | ||
乙 | 400 | 600 | 乙地 | 13 | |||
合计 | 16 | 12 | 28 |
设总运费为y元,求y与x之间的函数解析式,并写出自变量x的取值范围;
由机器调运方案表可知共有n种调运方案,求n的值.