题目内容
【题目】(本题满分12分)已知二次函数的图象如图.
(1)求它的对称轴与轴交点D的坐标;
(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与轴,轴的交点分别为A、B、C三点,若∠ACB=90°,求此时抛物线的解析式;
(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.
【答案】(本题满分12分)
解: (1)由得…………1分
∴D(3,0)…………2分
(2)方法一:
如图1, 设平移后的抛物线的解析式为
…………3分
则COC=
令即
得 …………4分
∴A,B
∴………5分
……………………6分
∵
即:
得 (舍去) ……………7分
∴抛物线的解析式为……………8分
方法二:
∵∴顶点坐标
设抛物线向上平移h个单位,则得到,顶点坐标…………3分
∴平移后的抛物线:……………………4分
当时,, 得
∴AB……………………5分
∵∠ACB=90° ∴△AOC∽△COB
∴OA·OB……………………6分
得,…………7分
∴平移后的抛物线:…………8分
(3)方法一:
如图2,由抛物线的解析式可得
A(-2 ,0),B(8,0),C(4,0) ,M…………9分
过C、M作直线,连结CD,过M作MH垂直y轴于H,
则
∴
在Rt△COD中,CD==AD
∴点C在⊙D上 …………………10分
∵
……11分
∴
∴△CDM是直角三角形,∴CD⊥CM
∴直线CM与⊙D相切 …………12分
方法二:
如图3,由抛物线的解析式可得
A(-2 ,0),B(8,0),C(4,0) ,M…………9分
作直线CM,过D作DE⊥CM于E, 过M作MH垂直y轴于H,则,, 由勾股定理得
∵DM∥OC
∴∠MCH=∠EMD
∴Rt△CMH∽Rt△DME …………10分
∴得…………11分
由(2)知∴⊙D的半径为5
∴直线CM与⊙D相切 …………12分
【解析】
(1)根据对称轴公式求出x=﹣,求出即可;
(2)假设出平移后的解析式即可得出图象与x轴的交点坐标,再利用勾股定理求出即可;
(3)由抛物线的解析式可得,A,B,C,M各点的坐标,再利用勾股定理逆定理求出CD⊥CM,即可证明.