题目内容
【题目】如图1,矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处,已知折痕与边BC交于点O,连结AP、OP、OA.
(1)求证:△OCP∽△PDA;
(2)若△OCP与△PDA的面积比为1:4,求边AB的长;
(3)如图2,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.探究:当点M、N在移动过程中,线段EF与线段PB有何数量关系?并说明理由.
【答案】(1)见解析;(2)10;(3)PB=2EF.
【解析】
(1)根据折叠的性质可知得到∠APO=∠B=90°,根据相似三角形的判定定理证明即可;
(2)根据勾股定理计算即可;
(3)作MH∥AB交PB于H,根据相似三角形的性质得到BF=FH,根据等腰三角形的性质得到PE=EH,得到答案.
(1)证明:由折叠的性质可知,∠APO=∠B=90°,
∴∠APD+∠CPO=90°,又∠APD+∠DAP=90°,
∴∠DAP=∠CPO,又∠D=∠C=90°,
∴△OCP∽△PDA;
(2)∵△OCP∽△PDA,面积比为1:4,
∴,
∴CP=4,
设AB=x,则AP=x,PD=x-4,
由勾股定理得,AD2+PD2=AP2,即82+(x-4)2=x2,
解得,x=10,即AB=10;
(3)PB=2EF.
作MH∥AB交PB于H,
∴∠PHM=∠PBA,
∵AP=AB,
∴∠APB=∠PBA,
∴∠APB=∠PHM,
∴MP=MH,又BN=PM,
∴MH=BN,又∵MH∥AB,
∴BF=FH,
∵MP=MH,ME⊥BP,
∴PE=EH,
∴PB=2EF.
练习册系列答案
相关题目