题目内容
【题目】如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).
(1)求抛物线的解析式;
(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,
①求当△BEF与△BAO相似时,E点坐标;
②记平移后抛物线与AB另一个交点为G,则S△EFG与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.
【答案】
(1)
解:直线AB的解析式为y=2x+4,
令x=0,得y=4;令y=0,得x=﹣2.
∴A(﹣2,0)、B(0,4).
∵抛物线的顶点为点A(﹣2,0),
∴设抛物线的解析式为:y=a(x+2)2,
点C(0,﹣4)在抛物线上,代入上式得:﹣4=4a,解得a=﹣1,
∴抛物线的解析式为y=﹣(x+2)2
(2)
解:平移过程中,设点E的坐标为(m,2m+4),
则平移后抛物线的解析式为:y=﹣(x﹣m)2+2m+4,
∴F(0,﹣m2+2m+4).
①∵点E为顶点,∴∠BEF≥90°,
∴若△BEF与△BAO相似,只能是点E作为直角顶点,
∴△BAO∽△BFE,
∴ ,即 ,可得:BE=2EF.
如答图2﹣1,过点E作EH⊥y轴于点H,则点H坐标为:H(0,2m+4).
∵B(0,4),H(0,2m+4),F(0,﹣m2+2m+4),
∴BH=|2m|,FH=|﹣m2|.
在Rt△BEF中,由射影定理得:BE2=BHBF,EF2=FHBF,
又∵BE=2EF,∴BH=4FH,
即:4|﹣m2|=|2m|.
若﹣4m2=2m,解得m=﹣ 或m=0(与点B重合,舍去);
若﹣4m2=﹣2m,解得m= 或m=0(与点B重合,舍去),此时点E位于第一象限,∠BEF为锐角,故此情形不成立.
∴m=﹣ ,
∴E(﹣ ,3).
②假设存在.
联立抛物线:y=﹣(x+2)2与直线AB:y=2x+4,可求得:D(﹣4,﹣4),
∴S△ACD= ×4×4=8.
∵S△EFG与S△ACD存在8倍的关系,
∴S△EFG=64或S△EFG=1.
联立平移抛物线:y=﹣(x﹣m)2+2m+4与直线AB:y=2x+4,可求得:G(m﹣2,2m).
∴点E与点G横坐标相差2,即:|xG|﹣|xE|=2.
当顶点E在y轴左侧时,如答图2﹣2,
S△EFG=S△BFG﹣S△BEF= BF|xG|﹣ BF|xE|= BF(|xG|﹣|xE|)=BF.
∵B(0,4),F(0,﹣m2+2m+4),∴BF=|﹣m2+2m|.
∴|﹣m2+2m|=64或|﹣m2+2m|=1,
∴﹣m2+2m可取值为:64、﹣64、1、﹣1.
当取值为64时,一元二次方程﹣m2+2m=64无解,故﹣m2+2m≠64.
∴﹣m2+2m可取值为:﹣64、1、﹣1.
∵F(0,﹣m2+2m+4),
∴F坐标为:(0,﹣60)、(0,3)、(0,5).
同理,当顶点E在y轴右侧时,点F为(0,5);
综上所述,S△EFG与S△ACD存在8倍的关系,点F坐标为(0,﹣60)、(0,3)、(0,5).
【解析】(1)求出点A的坐标,利用顶点式求出抛物线的解析式;(2)①首先确定点E为Rt△BEF的直角顶点,相似关系为:△BAO∽△BFE;如答图2﹣1,作辅助线,利用相似关系得到关系式:BH=4FH,利用此关系式求出点E的坐标;②首先求出△ACD的面积:S△ACD=8;若S△EFG与S△ACD存在8倍的关系,则S△EFG=64或S△EFG=1;如答图2﹣2所示,求出S△EFG的表达式,进而求出点F的坐标.
【考点精析】掌握二次函数的性质是解答本题的根本,需要知道增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.
【题目】有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和千克数如表所示,商家用加权平均数来确定什锦糖的单价.
甲种糖果 | 乙种糖果 | 丙种糖果 | |
单价(元/千克) | 15 | 25 | 30 |
千克数 | 40 | 40 | 20 |
(1)求该什锦糖的单价.
(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克?