题目内容

【题目】如图,直线y=kx+c与抛物线y=ax2+bx+c的图像都经过y轴上的D点,抛物线与x轴交于A、B两点,其对称轴为直线x=1,且OA=OD.直线y=kx+c与x轴交于点C(点C在点B的右侧).则下列命题中正确命题的是( ) ①abc>0; ②3a+b>0; ③﹣1<k<0; ④4a+2b+c<0; ⑤a+b<k.

A.①②③
B.②③⑤
C.②④⑤
D.②③④⑤

【答案】B
【解析】解:∵抛物线开口向上, ∴a>0.
∵抛物线对称轴是x=1,
∴b<0且b=﹣2a.
∵抛物线与y轴交于正半轴,
∴c>0.
∴①abc>0错误;
∵b=﹣2a,
∴3a+b=3a﹣2a=a>0,
∴②3a+b>0正确;
∵b=﹣2a,
∴4a+2b+c=4a﹣4a+c=c>0,
∴④4a+2b+c<0错误;
∵直线y=kx+c经过一、二、四象限,
∴k<0.
∵OA=OD,
∴点A的坐标为(c,0).
直线y=kx+c当x=c时,y>0,
∴kc+c>0可得k>﹣1.
∴③﹣1<k<0正确;
∵直线y=kx+c与抛物线y=ax2+bx+c的图像有两个交点,
∴ax2+bx+c=kx+c,
得x1=0,x2=
由图像知x2>1,
>1
∴k>a+b,
∴⑤a+b<k正确,
即正确命题的是②③⑤.
故选B.
【考点精析】解答此题的关键在于理解抛物线与坐标轴的交点的相关知识,掌握一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网