题目内容
【题目】如图,在四边形ABCD中,AD∥BC,AD=5,BC=18,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒3个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动,当运动时间t秒时,以点P,Q,E,D为顶点的四边形是平行四边形,则t的值为_____.
【答案】2秒或3.5秒
【解析】
由AD∥BC,则PD=QE时,以点P,Q,E,D为顶点的四边形是平行四边形,
①当Q运动到E和C之间时,设运动时间为t,则得:9-3t=5-t,解方程即可;
②当Q运动到E和B之间时,设运动时间为t,则得:3t-9=5-t,解方程即可.
∵E是BC的中点,
∴BE=CE=BC=9,
∵AD∥BC,
∴PD=QE时,以点P,Q,E,D为顶点的四边形是平行四边形,
①当Q运动到E和C之间时,设运动时间为t,
则得:93t=5t,
解得:t=2,
②当Q运动到E和B之间时,设运动时间为t,
则得:3t9=5t,
解得:t=3.5;
∴当运动时间t为2秒或3.5秒时,以点P,Q,E,D为顶点的四边形是平行四边形.
故答案为:2秒或3.5秒.
练习册系列答案
相关题目