题目内容
【题目】如图,四边形ABCD中,BD垂直平分AC,垂足为点F,E为四边形ABCD外一点,且∠ADE=∠BAD,AE⊥AC.
(1)求证:四边形ABDE是平行四边形;
(2)如果DA平分∠BDE,AB=5,AD=6,求AC的长.
【答案】(1)证明见试题解析;(2)9.6.
【解析】试题(1)根据已知和角平分线的定义证明∠ADE=∠BAD,得到DE∥AB,又AE∥BD,根据两组对边分别平行的四边形是平行四边形证明即可;
(2)设BF=x,根据勾股定理求出x的值,再根据勾股定理求出AF,根据AC=2AF得到答案.
试题解析:(1)∵AE⊥AC,BD垂直平分AC,
∴AE∥BD,
∵∠ADE=∠BAD,
∴DE∥AB,
∴四边形ABDE是平行四边形;
(2)∵DA平分∠BDE,
∴∠BAD=∠ADB,
∴AB=BD=5,
设BF=x,
则52-x2=62-(5-x)2,
解得,x=,
∴AF=,
∴AC=2AF=.
练习册系列答案
相关题目
【题目】某市射击队甲、乙两名优秀队员在相同的条件下各射耙次,每次射耙的成绩情况如图所示:
请将表格补充完整:
平均数 | 方差 | 中位数 | 命中环(含环)以上的环数 | |
甲 | ||||
乙 |
请从下列四个不同的角度对这次测试结果进行
①从平均数和方差向结合看,________的成绩好些;
②从平均数和中位数相结合看,________的成绩好些;
③从平均数和折线统计图走势相结合看,________的成绩好些;
④若其他队选手最好成绩在环左右,现要选一人参赛,你认为选谁参加,并说明理由.