题目内容

如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,∠ACB的平分线与∠ABC的外角平分线交于E点,连接AE,则∠CEB是(  )
分析:先根据三角形的外角性质求出∠ABD,再根据角平分线分别求出∠EBD,∠BCE,再根据三角形的外角性质即可求解.
解答:解:∵∠ACB=90°,∠BAC=30°,
∴∠ABD=120°,
∵CE是∠ACB的平分线,BE是∠ABC的外角平分线,
∴∠EBD=60°,∠BCE=45°,
∴∠CEB=60°-45°=15°.
故选A.
点评:考查了三角形的外角性质和角平分线的性质,得出∠EBD,∠BCE的度数是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网