题目内容
【题目】把一边长为36cm的正方形硬纸板进行适当的剪裁,折成一个长方体盒子(纸板的厚度忽略不计)
(1)如图,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子.
①要使折成的长方体盒子的底面积为676cm2,那么剪掉的正方形的边长为多少?
②折成的长方形盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.
(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方体盒子,若折成的一个长方体盒子的表面积为880cm2,求此时长方体盒子的长、宽、高(只需求出符合要求的一种情况)
【答案】(1)①剪掉的正方形的边长为5cm, ②当剪掉的正方形的边长为9cm时,长方形盒子的侧面积最大为648cm2;(2)剪掉的正方形的边长为8cm.此时长方体盒子的长为20cm,宽为10cm,高为8cm.
【解析】分析:(1)①设剪掉的正方形的边长为xcm,根据题意得出(36-2x)2=676,求出即可;
②设剪掉的正方形的边长为xcm,盒子的侧面积为Scm2,则y与x的函数关系为:S=4(36-2x)x,利用二次函数最值求出即可;
(2)设剪掉的长方形盒子的高为acm,利用折成的一个长方形盒子的表面积为880cm2,得出等式方程求出即可.
详解:(1)①设剪掉的正方形的边长为xcm.
则(36﹣2x)2=676,即36﹣2x=±26,
解得:x1=31(不合题意,舍去),x2=5,
∴剪掉的正方形的边长为5cm.
②侧面积有最大值.设剪掉的正方形的边长为xcm,盒子的侧面积为Scm2,
则S与x的函数关系为:
S=(36﹣2x)×x×4=﹣8x2+144x=﹣(x﹣9)2+648,
∴x=9时,S最大=648.
即当剪掉的正方形的边长为9cm时,长方形盒子的侧面积最大为648cm2;
(2)在如图的一种剪裁图中,
设剪掉的正方形的边长为acm,长为(36﹣2a)cm,宽为(18﹣a)cm,高为acm.
(36﹣2a)×36+2a(18﹣a)=880
解得:a1=﹣26(不合题意,舍去),a2=8.
∴剪掉的正方形的边长为8cm.此时长方体盒子的长为20cm,宽为10cm,高为8cm.