题目内容
【题目】如图,在△ABC中,∠A=90°,P是BC上一点,且DB=DC,过BC上一点P,作PE⊥AB于E,PF⊥DC于F,已知:AD:DB=1:3,BC=,则PE+PF的长是( )
A. B. 6C. D.
【答案】C
【解析】
根据三角形的面积判断出PE+PF的长等于AC的长,这样就变成了求AC的长;在Rt△ACD和Rt△ABC中,利用勾股定理表示出AC,解方程就可以得到AD的长,再利用勾股定理就可以求出AC的长,也就是PE+PF的长.
∵△DCB为等腰三角形,PE⊥AB,PF⊥CD,AC⊥BD,
∴S△BCD=BDPE+CDPF=BDAC,
∴PE+PF=AC,
设AD=x,BD=CD=3x,AB=4x,
∵AC2=CD2-AD2=(3x)2-x2=8x2,
∵AC2=BC2-AB2=()2-(4x)2,
∴x=2,
∴AC=4,
∴PE+PF=4.
故选:C
【题目】据调查,初中学生课桌椅不合格率达76.7%(不合格是指不能按照学生不同的身高来调节课桌椅的高度),为了解初中生的身高情况,随机抽取了某校初中部分男生、女生进行调查收集数据如下:
男生身高(单位:cm):163 161 160 163 161 162 163 164 163 163
女生身高(单位:cm):164 161 160 161 161 162 160 162 163 162
整理数据:
160 | 161 | 162 | 163 | 164 | |
男生(人) | 1 | 2 | 1 | a | 1 |
女生(人) | 2 | b | 3 | 1 | 1 |
根据以上信息,解答下列问题:
(1)填空:a= ,b= ,并补全条形统计图;
(2)现有两名身高都为163cm的男生和女生,比较这两名同学分别在男生、女生中的身高情况,并简述理由;
(3)根据相关研究发现,只有身高为161cm的初中生课桌椅是合格的,试估计全校1000名学生中,有多少名学生的课桌椅是合格的?