题目内容

【题目】若x+y= —1,则x4+5x3y+x2y+8x2y2+xy2+5xy3+y4的值等于

【答案】1
【解析】∵x+y=-1,
x4+5x3y+x2y+8x2y2+xy2+5xy3+y4
=(x4+2x2y2+y4)+5xy(x2+y2)+xy(x+y)+6x2y2
=(x2+y22+5xy[(x+y)2-2xy]+xy(x+y)+6x2y2
=[(x+y)2-2xy]2+5xy(1-2xy)-xy+6x2y2
=(1-2xy)2+5xy-10x2y2-xy+6x2y2
=1-4xy+4x2y2+5xy-10x2y2-xy+6x2y2
=1+(-4xy+5xy-xy)+(4x2y2-10x2y2+6x2y2),
=1.
对式子进行分解因式,出现(x+y),用-1代换,化简结果为1.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网