题目内容
【题目】如图,OM平分∠AOB,MC∥OB,MD⊥OB于D,若∠OMD=75°,OC=8,则MD的长为( )
A.2 B.3 C.4 D.5
【答案】C
【解析】
试题分析:作ME⊥OB于E,根据直角三角形的性质求出∠MOD=15°,根据角平分线的定义求出∠AOB的度数,根据平行线的性质得到∠ECM=∠AOB=30°,根据直角三角形的性质求出EM,根据角平分线的性质得到答案.
解:作ME⊥OB于E,
∵MD⊥OB,∠OMD=75°,
∴∠MOD=15°,
∵OM平分∠AOB,
∴∠AOB=2∠MOD=30°,
∵MC∥OB,
∴∠ECM=∠AOB=30°,
∴EM=MC=4,
∵OM平分∠AOB,MD⊥OB,ME⊥OB,
∴MD=ME=4,
故选:C.
练习册系列答案
相关题目