题目内容
【题目】如图1,在平面直角坐标系中,直线y=﹣x+b与x轴、y轴相交于A、B两点,动点C(m,0)在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上,过点D作DE⊥x轴于点E.
(1)求m和b的数量关系;
(2)当m=1时,如图2,将△BCD沿x轴正方向平移得△B′C′D′,当直线B′C′经过点D时,求点B′的坐标及△BCD平移的距离;
(3)在(2)的条件下,直线AB上是否存在一点P,以P、C、D为顶点的三角形是等腰直角三角形?若存在,写出满足条件的P点坐标;若不存在,请说明理由.
【答案】(1)b=3m;(2)个单位长度;(3)P(0,3)或(2,2)
【解析】
(1)易证△BOC≌△CED,可得BO=CE=b,DE=OC=m,可得点D坐标,代入解析式可求m和b的数量关系;
(2)首先求出点D的坐标,再求出直线B′C′的解析式,求出点C′的坐标即可解决问题;
(3)分两种情况讨论,由等腰直角三角形的性质可求点P坐标.
解:(1)直线y=﹣x+b中,x=0时,y=b,
所以,B(0,b),又C(m,0),
所以,OB=b,OC=m,
在和中
∴点
(2)∵m=1,
∴b=3,点C(1,0),点D(4,1)
∴直线AB解析式为:
设直线BC解析式为:y=ax+3,且过(1,0)
∴0=a+3
∴a=-3
∴直线BC的解析式为y=-3x+3,
设直线B′C′的解析式为y=-3x+c,把D(4,1)代入得到c=13,
∴直线B′C′的解析式为y=-3x+13,
当y=3时,
当y=0时,
∴△BCD平移的距离是个单位.
(3)当∠PCD=90°,PC=CD时,点P与点B重合,
∴点P(0,3)
如图,当∠CPD=90°,PC=PD时,
∵BC=CD,∠BCD=90°,∠CPD=90°
∴BP=PD
∴点P是BD的中点,且点B(0,3),点D(4,1)
∴点P(2,2)
综上所述,点P为(0,3)或(2,2)时,以P、C、D为顶点的三角形是等腰直角三角形.