题目内容
【题目】如图,池塘边一棵垂直于水面BM的笔直大树AB在点C处折断,AC部分倒下,点A与水面上的点E重合,部分沉入水中后,点A与水中的点F重合,CF交水面于点D,DF=2m,∠CEB=30°,∠CDB=45°,求CB部分的高度.(精确到0.1m.参考数据:≈1.41,≈1.73)
【答案】CB部分的高度约为3.4m.
【解析】
设CB部分的高度为,则BC=,CD=,CE=2,结合CE=CF=CD+DF即可得出关于x的一元一次方程,解之即可得出结论.
设CB部分的高度为xm.
∵∠BDC=∠BCD=45°,
∴BC=BD=xm.
在Rt△BCD中,CD===x(m).
在Rt△BCE中,∵∠BEC=30°,
∴CE=2BC=2x(m).
∵CE=CF=CD+DF,
∴2x=x+2,
解得:x=2+.
∴BC=2+≈3.4(m).
答:CB部分的高度约为3.4m.
练习册系列答案
相关题目
【题目】二次函数(是常数,)的自变量与函数值的部分对应值如下表:
… | 0 | 1 | 2 | … | |||
… | … |
且当时,与其对应的函数值.有下列结论:①;②和3是关于的方程的两个根;③.其中,正确结论的个数是( )
A. 0B. 1C. 2D. 3