题目内容

已知:如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与A精英家教网C,AB分别交于点D,E,且∠CBD=∠A.
(1)判断直线BD与⊙O的位置关系,并证明你的结论;
(2)若AD=BD=2,求⊙O的面积.
分析:(1)连接OD.证直线与圆相切,即证BD⊥OD.由∠CBD+∠CDB=90°,∠CBD=∠A=∠ODA,可得∠ODA+∠CDB=90°.根据平角定义得证;(2)即求圆的半径求解.连接DE,则∠ADE=90°.在Rt△BCA中,∠CDB=∠A=∠ABD,得∠A=30°.从而在△ADE中利用三角函数求解.
解答:精英家教网解:(1)直线BD与⊙O相切.                         (1分)
证明:如图1,连接OD.                              (2分)
∵OA=OD,∴∠A=∠ADO.                             (3分)
∵∠C=90°,
∴∠CBD+∠CDB=90°
又∵∠CBD=∠A,(5分)
∴∠ADO+∠CDB=90°,
∴∠ODB=180°-(∠ADO+∠CDB)=90°.
∴直线BD与⊙O相切.                                (6分)

(2)连OD、DE.
∵AD=BD,
∴∠A=∠DBA.                                      (7分)
在Rt△BDC中,
∵∠C=90°,∠CBD=∠A=∠DBA,
∴3∠A=90°,即有∠A=30°.                        (8分)
tan∠A=
DE
AD
,得DE=AD•tan30°=2×
3
3
=
2
3
3
.(10分)
又∠DOE=60°,OD=OE,
∴△DOE为等边三角形,
OD=DE=
2
3
3
.                                  (10分)
即⊙O的半径r=OD=
2
3
3

故⊙O的面积S=πr2=
3
.                           (12分)
点评:本题考查了切线的判定,解直角三角形等知识点.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网