题目内容
【题目】在平面直角坐标系中,BC∥OA,BC=3,OA=6,AB=3
(1)直接写出点B的坐标
(2)已知D.E分别为线段OC.OB上的点,OD=5,OE=2BE,直线DE交x轴于点F,求直线DE的解析式
(3)在(2)的条件下,点M是直线DE上的一点,在x轴上方是否存在另一个点N,使以O.D.M.N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由。
【答案】(1)B(3,6) (2) y=-x+5 (3) 存在N1 (4,8) N2 (-5,2.5)N3(-2,)
【解析】分析:(1)作BH⊥x轴于点H,则四边形OHBC为矩形,则OH=CB=3,进而可求得AH的长,在Rt△ABH中,根据勾股定理即可求出BH的长,由此可得B点坐标;
(2)作EG⊥x轴于点G,则EG∥BH,易得根据相似三角形的对应边成比例可求出EG、OG的长,即可得到E点的坐标,进而可用待定系数法求出直线DE的解析式;
(3)此题应分情况讨论:
①以OD、ON为边的菱形ODMN,根据直线DE的解析式可求出F点的坐标,即可得到OF的长;过M作 轴于P,通过构建的相似三角形可求出M点的坐标,将M点向下平移OD个单位即可得到N点的坐标;
②以OD、OM为边的菱形ODNM,此时MN∥y轴,延长NM交x轴于P,可根据直线DE的解析式用未知数设出M点的坐标,进而可在中,由勾股定理求出M点的坐标,将M点向上平移OD个单位即可得到N点的坐标;
③以OD为对角线的菱形OMCN,根据菱形对角线互相垂直平分的性质即可求得M、N的纵坐标,将M点纵坐标代入直线DE的解析式中即可求出M点坐标,而M、N关于y轴对称,由此可得到N点的坐标.
详解:(1)作BH⊥x轴于点H,则四边形OHBC为矩形,
∴OH=CB=3,
∴AH=OAOH=63=3,
在Rt△ABH中,
∴点B的坐标为(3,6);
(2)作EG⊥x轴于点G,则EG∥BH,
∴△OEG∽△OBH,
∴
又∵OE=2EB,
∴ ∴
∴OG=2,EG=4,
∴点E的坐标为(2,4),
又∵点D的坐标为(0,5),
设直线DE的解析式为y=kx+b,
则
解得
∴直线DE的解析式为:
(3)答:存在;
①如图1,当OD=DM=MN=NO=5时,四边形ODMN为菱形.作MP⊥y轴于点P,则MP∥x轴,MPD∽△FOD
∴
又∵当y=0时,
解得x=10,
∴F点的坐标为(10,0),
∴OF=10,
在Rt△ODF中,
∴
∴
∴点M的坐标为
∴点N的坐标为
②如图2,当OD=DN=NM=MO=5时,四边形ODNM为菱形,延长NM交x轴于点P,则MP⊥x轴.
∵点M在直线上,
∴设M点坐标为
在Rt△OPM中,
∴
解得: (舍去),
∴点M的坐标为(4,3),
∴点N的坐标为(4,8);
③如图3,当OM=MD=DN=NO时,四边形OMDN为菱形,连接NM,交OD于点P,则NM与OD互相垂直平分,
∴
∴
∴
∴
∴点N的坐标为
综上所述,x轴上方的点N有三个,分别为