题目内容
如图,⊙O的直径AB的长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则CD长为( )
A.7 | B. | C. | D.9 |
B
分析:作DF⊥CA,交CA的延长线于点F,作DG⊥CB于点G,连接DA,DB.由CD平分∠ACB,根据角平分线的性质得出DF=DG,由HL证明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,从而求出CD=.
解答:解:作DF⊥CA,垂足F在CA的延长线上,作DG⊥CB于点G,连接DA,DB.
∵CD平分∠ACB,
∴∠ACD=∠BCD
∴DF=DG,弧AD=弧BD,
∴DA=DB.
∵∠AFD=∠BGD=90°,
∴△AFD≌△BGD,
∴AF=BG.
易证△CDF≌△CDG,
∴CF=CG.
∵AC=6,BC=8,
∴AF=1,(也可以:设AF=BG=X,BC=8,AC=6,得8-x=6+x,解x=1)
∴CF=7,
∵△CDF是等腰直角三角形,(这里由CFDG是正方形也可得).
∴CD=.
故选B.
解答:解:作DF⊥CA,垂足F在CA的延长线上,作DG⊥CB于点G,连接DA,DB.
∵CD平分∠ACB,
∴∠ACD=∠BCD
∴DF=DG,弧AD=弧BD,
∴DA=DB.
∵∠AFD=∠BGD=90°,
∴△AFD≌△BGD,
∴AF=BG.
易证△CDF≌△CDG,
∴CF=CG.
∵AC=6,BC=8,
∴AF=1,(也可以:设AF=BG=X,BC=8,AC=6,得8-x=6+x,解x=1)
∴CF=7,
∵△CDF是等腰直角三角形,(这里由CFDG是正方形也可得).
∴CD=.
故选B.
练习册系列答案
相关题目