题目内容
【题目】(10分)如图所示,某公路一侧有A、B两个送奶站,C为公路上一供奶站,CA和CB为供奶路线,现已测得AC=8km,BC=15km,AB=17km,∠1=30°,若有一人从C处出发,沿公路边向右行走,速度为2.5km/h,问:多长时间后这个人距B送奶站最近?
【答案】3h.
【解析】试题分析:首先根据勾股定理逆定可证明△ABC是直角三角形,然后计算出∠BCD的度数,再根据直角三角形的性质算出DC的长,然后根据速度和路程可计算出多长时间后这人距离B送奶站最近.
试题解析:解:过B作BD⊥公路于D.∵82+152=172,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°.
∵∠1=30°,∴∠BCD=180°-90°-30°=60°.
在Rt△BCD中,∵∠BCD=60°,∴∠CBD=30°,∴CD=BC=×15=7.5(km).
∵7.5÷2.5=3(h),∴3小时后这人距离B送奶站最近.
练习册系列答案
相关题目