题目内容
【题目】阅读材料:求1+2+22+23+24+…+22013的值.
解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:
2S=2+22+23+24+25+…+22013+22014
将下式减去上式得2S﹣S=22014﹣1
即S=22014﹣1
即1+2+22+23+24+…+22013=22014﹣1
请你仿照此法计算:
(1)1+2+22+23+24+…+210
(2)1+3+32+33+34+…+3n(其中n为正整数).
【答案】详见解析.
【解析】试题分析:(1)设S=1+2+22+23+24+…+210,两边乘以2后得到新的等式,与已知等式相减,变形即可求出所求式子的值;(2)类比题目中的方法即可得到所求式子的值.
试题解析:
(1)设S=1+2+22+23+24+…+210,
将等式两边同时乘以2得2S=2+22+23+24+…+210+211,
将下式减去上式得:2S-S=211-1,即S=211-1,
则1+2+22+23+24+…+210=211-1;
(2)设S=1+3+32+33+34+…+3n①,
两边乘以3得:3S=3+32+33+34+…+3n+3n+1②,
②-①得:3S-S=3n+1 -1,即S=(3n+1-1),
则1+3+32+33+34+…+3n =(3n+1-1).
练习册系列答案
相关题目