题目内容

【题目】如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.

(1)求证:BE=CF;

(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.

求证:①ME⊥BC;②CM平分∠ACE.

【答案】见解析

【解析】

试题分析:(1)根据等腰直角三角形的性质求出∠B=∠ACB=45°,再求出∠ACF=45°,从而得到∠B=∠ACF,根据同角的余角相等求出∠BAE=∠CAF,然后利用“角边角”证明△ABE和△ACF全等,根据全等三角形对应边相等证明即可;

(2)①过点E作EH⊥AB于H,求出△BEH是等腰直角三角形,然后求出HE=BH,再根据角平分线上的点到角的两边距离相等可得DE=HE,然后求出HE=HM,从而得到△HEM是等腰直角三角形,再根据等腰直角三角形的性质求解即可;

②求出∠CAE=∠CEA=67.5°,根据等角对等边可得AC=CE,再利用“HL”证明Rt△ACM和Rt△ECM全等即可得到结论.

证明:(1)∵∠BAC=90°,AB=AC,

∴∠B=∠ACB=45°,

∵FC⊥BC,

∴∠BCF=90°,

∴∠ACF=90°﹣45°=45°,

∴∠B=∠ACF,

∵∠BAC=90°,FA⊥AE,

∴∠BAE+∠CAE=90°,

∠CAF+∠CAE=90°,

∴∠BAE=∠CAF,

在△ABE和△ACF中,

∴△ABE≌△ACF(ASA),

∴BE=CF;

(2)①如图,过点E作EH⊥AB于H,则△BEH是等腰直角三角形,

∴HE=BH,∠BEH=45°,

∵AE平分∠BAD,AD⊥BC,

∴DE=HE,

∴DE=BH=HE,

∵BM=2DE,

∴HE=HM,

∴△HEM是等腰直角三角形,

∴∠MEH=45°,

∴∠BEM=45°+45°=90°,

∴ME⊥BC;

②由题意得,∠CAE=45°+×45°=67.5°,

∴∠CEA=180°﹣45°﹣67.5°=67.5°,

∴∠CAE=∠CEA=67.5°,

∴AC=CE,

在Rt△ACM和Rt△ECM中

∴Rt△ACM≌Rt△ECM(HL),

∴∠ACM=∠ECM,

∴CM平分∠ACE.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网