题目内容
【题目】如图,在平面直角坐标系中,OABC的顶点C在x轴上,函数y=(k>0,x>0)的图象经过点A(2,6),且与边BC交于点D.若点D是边BC的中点,则OC的长为( )
A. 2B. 2.5C. 3.5D. 3
【答案】D
【解析】
设OC的长为x,则C(x,0).根据平行四边形的性质以及A点坐标为(2,6),得出B(2+x,6),由点D是边BC的中点,利用线段的中点坐标公式得出D(1+x,3),再根据函数y=(k>0,x>0)的图象经过点A(2,6),D,利用反比例函数图象上点的坐标特征得出3(1+x)=2×6,解方程即可.
设OC的长为x,则C(x,0).
∵四边形OABC是平行四边形,
∴AB∥OC,AB=OC=x,
∵A(2,6),
∴B(2+x,6),
∵点D是边BC的中点,
∴D(1+x,3),
∵函数y=(k>0,x>0)的图象经过点A(2,6),D,
∴3(1+x)=2×6,
∴x=3.
故选D.
【题目】现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):
步数 | 频数 | 频率 |
0≤x<4000 | 8 | a |
4000≤x<8000 | 15 | 0.3 |
8000≤x<12000 | 12 | b |
12000≤x<16000 | c | 0.2 |
16000≤x<20000 | 3 | 0.06 |
20000≤x<24000 | d | 0.04 |
请根据以上信息,解答下列问题:
(1)写出a,b,c,d的值并补全频数分布直方图;
(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?
(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.
【题目】某游泳馆每年夏季推出两种游泳付费方式.方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费4元;方式二:不购买会员证,每次游泳付费10元.设小明计划今年夏季游泳次数为x(x为正整数).
(1)根据题意,填写下表:
游泳次数 | 10 | 15 | 20 | … | x |
方式一的总费用(元) | 140 | 160 | _______ | … | _______ |
方式二的总费用(元) | 100 | 150 | ________ | … | ________ |
(2)若小明计划今年夏季游泳的总费用为260元,选择哪种付费方式,他游泳的次数比较多?
(3)小明选择哪种付费方式更合算?并说明理由.
【题目】在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.
销售量y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售价x(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.
(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?