题目内容
【题目】如图,∠ABC和∠ACB的平分线相交于点F,过点F作DE∥BC,交AB于D,交AC于E,下列结论正确的是( )
①BD=CE②△BDF,△CEF都是等腰三角形③BD+CE=DE④△ADE的周长为AB+AC.
A.①②B.③④C.①②③D.②③④
【答案】D
【解析】
①②根据平分线的性质、平行线的性质,借助于等量代换可求出∠DBF=∠DFB,即△BDF是等腰三角形,同理△CEF都是等腰三角形;③利用等腰三角形的性质即可证明;由④可得△ADE的周长为AB+AC;无法判断;
解:∵BF平分∠ABC,
∴∠ABF=∠CBF,
∵DE∥BC,
∴∠CBF=∠BFD,
∴∠ABF=∠BFD,
∴BD=FD,
同理可得CE=CF,
∴△BDF,△CEF都是等腰三角形;①不正确,②正确;
∴BD+CE=FD+FE=DE,③正确;
△ADE的周长=AD+FD+FE+AE=AD+BD+CE+AE=AB+AC,④正确
故选:D.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目