题目内容
【题目】如图,AB是⊙O的直径, BC交⊙O于点D,E是的中点,连接AE交BC于点F,∠ACB =2∠EAB.
(1)求证:AC是⊙O的切线;
(2)若,,求BF的长.
【答案】(1)证明见解析;(2).
【解析】
(1)连接AD,如图,根据圆周角定理,再根据切线的判定定理得到AC是⊙O的切线;
(2)作F做FH⊥AB于点H,利用余弦定义,再根据三角函数定义求解即可
(1)证明:如图,连接AD.
∵ E是中点,
∴.
∴ ∠DAE=∠EAB.
∵ ∠C =2∠EAB,
∴∠C =∠BAD.
∵ AB是⊙O的直径.
∴ ∠ADB=∠ADC=90°.
∴ ∠C+∠CAD=90°.
∴ ∠BAD+∠CAD=90°.
即 BA⊥AC
∴ AC是⊙O的切线.
(2)解:如图②,过点F做FH⊥AB于点H.
∵ AD⊥BD,∠DAE=∠EAB,
∴ FH=FD,且FH∥AC.
在Rt△ADC中,
∵,,
∴ CD=6.
同理,在Rt△BAC中,可求得BC= .
∴BD= .
设 DF=x,则FH=x,BF=-x.
∵ FH∥AC,
∴ ∠BFH=∠C.
∴.
即.
解得x=2.
∴BF=.
练习册系列答案
相关题目
【题目】已知:点A、点B在直线的两侧.
(点A到直线的距离小于点B到直线的距离).
如图, (1)作点B关于直线的对称点C; (2)以点C为圆心,的长为半径作,交于点E; (3)过点A作的切线,交于点F,交直线于点P; (4)连接、. |
根据以上作图过程及所作图形,下列四个结论中:
①是的切线; ②平分;
③; ④.
所有正确结论的序号是___________________________.