题目内容
【题目】如图1,已知△ABC中,AB=AC,点D是△ABC外一点(与点A分别在直线BC两侧),且DB=DC,过点D作DE∥AC,交射线AB于E,连接AE交BC于F.
(1)求证:AD垂直BC;
(2)如图1,点E在线段AB上且不与B重合时,求证:DE=AE;
(3)如图2,当点E在线段AB的延长线上时,写出线段DE,AC,BE的数量关系.
【答案】(1)见解析;(2)见解析;(3)DE=AC+BE.
【解析】
(1)根据线段垂直平分线的判定定理得到直线AD是BC的垂直平分线,证明结论;
(2)证明△ABD≌△ACD,得到∠BAD=∠CAD,根据平行线的性质得到∠BAD=∠CAD,等量代换得到∠BAD=∠EDA,根据等腰三角形的判定定理证明;
(3)仿照(2)的证明方法解答.
(1)∵AB=AC,DB=DC,
∴直线AD是BC的垂直平分线,
∴AD垂直BC;
(2)在△ABD和△ACD中,
,
∴△ABD≌△ACD,
∴∠BAD=∠CAD,
∵DE∥AC,
∴∠EDA=∠CAD,
∴∠BAD=∠EDA,
∴DE=AE;
(3)DE=AC+BE.
由(2)得,∠BAD=∠CAD,
∵DE∥AC,
∴∠EDA=∠CAD,
∴∠BAD=∠EDA,
∴DE=AE,
∵AB=AC,
∴DE=AB+BE=AC+BE.
【题目】将长为40 cm、宽为15 cm的长方形白纸,按如图所示的方法黏合起来,黏合部分宽为5 cm.
…
(1)根据上图,将表格补充完整:
白纸张数 | 1 | 2 | 3 | 4 | 5 | … |
纸条长度 | 40 | 110 | 145 | … |
(2)设x张白纸黏合后的总长度为y cm,则y与x之间的关系式是什么?
(3)你认为多少张白纸黏合起来总长度可能为2 018 cm吗?为什么?
【题目】为了更好改善河流的水质,治污公司决定购买10台污水处理设备现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.
A型 | B型 | |
价格万元台 | a | b |
处理污水量吨月 | 240 | 200 |
求a,b的值;
治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;
在的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.