题目内容
【题目】如图,平行四边形ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.
(1)求的值.
(2)若E为x轴上的点,且S△AOE=,求经过D、E两点的直线的解析式,并判断△AOE与△DAO是否相似?
(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.
【答案】(1);(2)y=x﹣或y=x+,△AOE∽△DAO;(3)存在,满足条件的点有四个:F1(﹣3,0);F2(3,8);F3(﹣,﹣);F4(﹣,).
【解析】
(1)解一元二次方程求出OA,OB的长度,再利用勾股定理求出AB的长度,再代入计算即可;
(2)先根据三角形的面积求出点E的坐标,并根据平行四边形的对边相等的性质求出点D的坐标,然后利用待定系数法求解直线的解析式;分别求出两三角形夹直角的两对应边的比,如果相等,则两三角形相似,否则不相似;
(3)根据菱形的性质,分AC与AF是邻边并且点F在射线AB上与射线BA上两种情况,以及AC与AF分别是对角线的情况分别进行求解计算.
解:(1)x2﹣7x+12=0,
(x﹣3)(x﹣4)=0,
∴x﹣3=0,x﹣4=0,
解得x1=3,x2=4,
∵OA>OB,
∴OA=4,OB=3,
在△AOB中,AB===5,
∴sin∠ABC=;
(2)根据题意,设E(x,0),则
S△AOE=×OA×x=×4x=,
解得x=,
∴E(,0)或(﹣,0),
∵四边形ABCD是平行四边形,
∴点D的坐标是(6,4),
设经过D、E两点的直线的解析式为y=kx+b,
则①,
解得 ,
∴解析式为y=x﹣;
②,
解得,
解析式为: y=x+
在△AOE与△DAO中, ,
,
∴,
又∵∠AOE=∠OAD=90°,
∴△AOE∽△DAO;
(3)根据计算的数据,OB=OC=3,
∴AO平分∠BAC,
①AC、AF是邻边,点F在射线AB上时,AF=AC=5,
所以点F与B重合,
即F(﹣3,0),
②AC、AF是邻边,点F在射线BA上时,M应在直线AD上,且FC垂直平分AM,
点F(3,8).
③AC是对角线时,做AC垂直平分线L,AC解析式为y=﹣x+4,直线L过(,2),且k值为(平面内互相垂直的两条直线k值乘积为﹣1),
L解析式为y=x+,联立直线L与直线AB求交点,
∴F(﹣,﹣),
④AF是对角线时,过C做AB垂线,垂足为N,根据等积法求出CN=,勾股定理得出,AN=,做A关于N的对称点即为F,AF=,过F做y轴垂线,垂足为G,FG=,
∴F(﹣,).
综上所述,满足条件的点有四个:F1(﹣3,0);F2(3,8);F3(﹣,﹣);F4(﹣,).
【题目】我市红领服饰有限公司生产了一款夏季服装,通过实验商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量y1(百件)与时间t(t为整数,单位:天)的部分对应值如表所示:
时间t(天) | 0 | 5 | 10 | 15 | 20 | 25 | 30 |
日销售量yt(百件) | 0 | 25 | 40 | 45 | 40 | 25 | 0 |
(1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映y1与t的变化规律,并求出y1与t的函数关系式及自变量t的取值范围;
(2)网上商店的日销售量y2(百件)与时间t(t为整数,单位:天)的关系如图所示.求y2与t的函数关系式,并写出自变量t的取值范围;
(3)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y(百件),求y与t的函数关系式;当t为何值时,日销售总量y达到最大,并求出此时的最大值.