题目内容
【题目】如图,在平行四边形ABCD中,BD是对角线,∠ADB=90°,E、F分别为边AB、CD的中点.
(1)求证:四边形DEBF是菱形;
(2)若BE=4,∠DEB=120°,点M为BF的中点,当点P在BD边上运动时,则PF+PM的最小值为 ,并在图上标出此时点P的位置.
【答案】(1)详见解析;(2).
【解析】
(1)根据直角三角形斜边上的中线等于斜边的一半,以及平行四边形的对边相等证明四边形DEBF的四边相等即可证得;
(2)连接EM,EM与BD的交点就是P,FF+PM的最小值就是EM的长,证明△BEF是等边三角形,利用三角函数求解.
(1)∵平行四边形ABCD中,AD∥BC,∴∠DBC=∠ADB=90°.
∵△ABD中,∠ADB=90°,E时AB的中点,∴DE=AB=AE=BE.
同理,BF=DF.
∵平行四边形ABCD中,AB=CD,∴DE=BE=BF=DF,∴四边形DEBF是菱形;
(2)连接BF.
∵菱形DEBF中,∠DEB=120°,∴∠EFB=60°,∴△BEF是等边三角形.
∵M是BF的中点,∴EM⊥BF.
则EM=BEsin60°=4×=2
.
即PF+PM的最小值是2.
故答案为:2.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目